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An analytic solution of the Boltzmann equation with a BGK (Bhatnagar, Gross and Krook) collision 

operator is constructed in the problem of the temperature jumps and the density of a rarefied gas in the 

half-space above a volatile surface, where a constant temperature gradient is specified far from the 

surface. The necessary numerical calculations are carried out. A canonical-matrix method with a 

normal form at infinity is simultaneously developed to solve the Biemann-Hilbert vector boundary- 

value problem. The proof of the expansion of the solution of the boundary-value problem considered 

in generalized eigenvectors of the corresponding characteristic equation is reduced to the solution of 

this problem. 

This problem has been solved by different approximate methods in many publications (for 
example, [l-S]). The history of the problem is described in [8-lo], and also in the other 
publications mentioned. 

Below, we obtain an accurate solution (in closed form) of this classical problem, expressed 
in quadratures, and we carry out numerical calculations using the exact formulae. The 
Boltzmann equation is reduced to a vector integro-differential equation with symmetric kernel, 
which is solved by Case’s method, which consists of expanding the solution in generalized 
eigenvectors. The proof of the theorem of the expansion is equivalent to the solution of the 
Riemann-Hilbert vector boundary-value problem with a matrix coefficient, the diagonalizing 
matrix of which is analytic in the plane with branch cuts connecting branching points. Hence, 
to construct the factor-matrix for the coefficient it is necessary to solve two other additional 
matrix boundary-value problems on the branch cuts. Along the way a canonical-matrix 
method is developed for solving the boundary-value problem. 

The fundamental-matrix method was developed previously [ll] to solve the corresponding 
boundary-value problem. In this paper a canonical matrix is used. Note that although the 
canonical matrix itself (in the temperature-jump problem) was constructed in [12], it was not 
used to solve the corresponding boundary-value problem. 

The equations considered and their analogues are widely employed not only in kinetic 
theory but also in theoretical astrophysics, in plasma physics, and in neutron-transport theory 
(for more detail see, for example, [13-151). 

Suppose a rarefied monatomic gas occupies the half-space x > 0 above a volatile surface 
which lies in the x = 0 plane. A steady temperature field T(x) = T,(l+ Kx) is maintained in the 
gas far from the surface. The behaviour of the gas is described by the distribution function f, 
which is the solution of the Boltzmann equation 
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u, $f(x,C) = Lf 

and satisfies the boundary conditions 

~(~,C)=~“‘[~+(K~-AC,+&,)(C’-~)+E~+E~] (x-+00) 

f(0.C) = f(O), c, > 0 

Here 

t+ =(T,-T,)/T,, E, =(r+,-n,)/n, 

f(O) = nw@, / lc)3’2 exp(-C2) 

C=pi’v, p,,, =ml(2kTw), A=3Kl/& 

(eT and E, are the initial values of the temperature jumps and the density, respectively, T.. is 
the temperature of the wall, and n, is the saturated-vapour density). 

The novelty of this problem from the physical point of view, compared with that considered 
in [ll), is the fact that in this problem the gas occupies a half-space above the volatile 
(permeable) surface, through which there is no mass flux from the surface, i.e. the gas is in 
mechanical equilibrium with the surface. The presence of a temperature gradient in the system 
denotes thermal non-equilibrium. This means that the concentration of the gas in the region of 
the surface is different from the equilibrium value-the concentration of the saturated vapour 
at the surface temperature. 

The main problems from the physical point of view considered in this paper are to calculate 
the relative deviation of the vapour concentration from the equilibrium value (the value of E,) 
and to calculate the relative temperature jump (the value of er). 

We will seek a solution of the Boltzmann equation in the form 

and we will expand Y in two orthogonal directions 

Y= &W,)+(C,2 +c; -l)Y,(x,C,) 

Then, we obtain the following equation for the column vector 

QT (c1’)W9 v’)exp(-p’2 14’ (1) 

with boundary conditions 

Y(O&=Aj& “‘;; (p>O) 
/I /I 
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(the superscript T denotes transposition). 
We seek a solution of Eq. (1) in the form 

Y, (x9 PL) = ev(-x / WWh PL) 

and we arrive at the characteristic equation 

(2) 

(3) 

(4) 

where n(ri, is a non-singular normalizing vector. Hence we obtain the following eigenvectors 
of the characteristic equation 

(5) 

The symbol Pn-’ denotes a distribution-the principal value of the integral of n-‘, S(X) is 
the delta function A(z) is the dispersion matrix, Z is the unit matrix, and QVr(u) is the inverse 
transposed matrix. 

It can be shown that the dispersion equation 

h(z) = det h(z) = 0 

has a fourth-order zero at infinity, to which the following solutions of Eq. (1) correspond 

(6) 

Theorem. Equation (1) with boundary conditions (2) has a unique solution, which can be 
represented in the form of the expansion 

(7) 

Proof. We substitute x = 0 and the eigenvectors (5) into (7). We obtain a singular vector 
integral equation with a Cauchy kernel on the half-axis u > 0 
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Multiplying (8) on the left by pexp(-p2)QT(p) and using the boundary values on the half- 
axis of the dispersion matrix and the vector 

we obtain a homogeneous Riemann-Hilbert vector boundary-value problem with matrix 
coefficient, which, after transposition, can be written in the form 

[2&kV+(jk) -e-‘(~L)Wtr_L)1TA+(~)=I2~~~-(~t)- e-‘c!ow~f~-~CL~~ P > Q PI 

Multiplying (10) on the right by Q-“(p)Q-‘(p) and putting 

we obtain the following boundary-value problem 

[~J;;irr+(~)-~-'(~)~~JI)~TW*(Il~=[2J;;iN"(F1~-~-'~C1)~(~)lT~-(CIX P>O 

Note that the matrix 

W 

I/Y 
S(z) = 

-I/y 

reduces the matrix TV(z) to diagonal form 

Here 

are the elements of the diagonal matrix sZ(z)_ 
The mats-func~on S(z) is unique and analytic in the plane tith branch cuts q and fi, 

connecting the branching points -Z and a, and --51 and Z, respectively, which are zeros of the 
polynomial w(z)(u)= J(2)+ild(2)). 

For the matrix coefficient 

that occurs in the boundary condition (lo), we consider the factorization problem 

@‘(p) = G(V)@‘@). P ’ 0 (34) 

Moreover, fur the matr~-fiction G?(r) to be unique it is necessary fur the fo~~uwjng 
condition to be satisfied on the branch-cut T = I-, u r, 

We will seek a soiution of problems (15) and (14) in the form 
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Q(z) = s-‘(z)U(zNz) (16) 

where U(z) is a new unknown matrix. 
Boundary-value problems (14) and (15) are now equivalent to the following boundary-value 

problems 

U+(P) = ‘%(cL)U-(P), ~1’ 0 (17) 

U+(T)T= TV(z), z E l- (18) 

Here 

Since the matrix G, is diagonal, it is convenient to take U also in the form of a diagonal 
matrix: diag(U,, U,}=U. The matrix boundary-value problem (17) can now be split into two 
scalar boundary-value problems 

KW= *_) Q *Z(P) V(p) (a=1 2) CL>0 3 9 

while problem (18) essentially remains a vector boundary-value problem 

u;(z) = l&2), z E r 

Without deriving it, we will give the solution of problems (19) and (20) 

Ua(z)=(Z-x~)U~o)(Z) (a=1,2) 

U:‘)(z) = exp( A(z) + (-l)*-’ r(z)(B(z) - R(z))) 

(1% 

(20) 

(21) 

A(z) = $2 a!& B(z)=q b(x)& 
0 2n 0 r(x)6 - z) 

The point x1 is the solution of the Jacobi inversion problem 

$Z h=T 5 

Here e,(x) is the principal value of the argument of the function Q:(x). 
Thus, the factor-matrix 0(z) for the dispersion matrix A(z) is constructed and defined by 

expression (16). Another factorization of the dispersion matrix from [16] is now necessary 

h(z) = @,(zY&-z) (22) 

where a,,(z) is a canonical matrix with normal form at infinity. 
We substitute (22) into (lo), multiply it on the right by 0:(-p) and apply a transposition to 
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the equation obtained. We obtain the boundary-value problem 

r~~~~~lr~2~~~+~~~ - fP(Ct)VfP)3 = ~~~~~~I~~~~~-~~~ - &?-‘~~~~~~~I, Ir. > 0 m 

Taking into account the behaviour at infinity of the matrices and vectors in this boundary 
condition (23) we can write its general solution 

where c, and c, are arbitrary constants. We obtain the matrix aiT(z) from (60) and (61) of 
WI 

where the matrix Z(z) is defined by (62) in [l2]. 
We will make the solution (24) correct, i.e. we will determine the unknown constants E,, E,, 

c, and G, so that this solution will decrease as l/z at infinity. This vector can then be taken as 
the vector N(z) given by (9). 

Suppose p, and ~,(?t=O, -I, -2, . s . ) are tiurent coefficients of the expansions of the 
functions ~~~~~z)~-~ and r~~~~)~~ respectively in the ue~ghbo~ho~ of infinity, where, by {21), 
p,,qO = 1. We will denote by A_,, B_, and R_, (n = 1, 2, . . . ) the Laurent coefficients of the 
expansions in the neighbourhood of infinity of the functions A(z), B(z) and R(z) 

XI x”-1 

R-,=-j-- h 
0 r(x) 

Equating the coefficients of z and z0 in the upper and lower rows of (23) to zero, we obtain a 
system af equations, from which we have 

where the coefficient b,a is defined in [123. The free parameters of the vector N(z) are defined 
uniqueiy, including alsa the coefficients E, and E, of expansion (?), correspoud~ng to a 
discrete spectrum_ The coef~~ents of the continuous spectrum n@) are alsu found uniquely 
from Sokhotskii’s form&a: N*(u)- N-(&I = w(u). This proves the theorem. The last two 
relations of (27) give the required values of the temperature jumps and the gas density above 
the volatile surface. We will write these formulae in explicit form 

e,, =-ET- ~x,Qe~p{-2A_~ +2R_*) 
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Q=(y'+f!yq -a*1 (y-a)-* 

(the coefficients A_,, A_z, R_1, R_2, B_, are defined by (26)). 
Numerical calculations, carried out using the accurate formulae (28), give the following 

vahIes E, = 2.15897 l(i and E, = 1.23035M for the temperature jump and the density jump in the 
rarefied gas, respectively. Up to the present time the exact value of the temperature jump was 
assumed to be E, = 2.1646984Kf [Is]. 

The first formula of (28) obtained here is identical with the formula (30) in [ll]. 
The proposed method can be used to solve the similar Riemann-Hilbert boundary-value 

problem with matrix coefficient (the diagonalizing matrix of which has a branching point), that 
occurs in the theory of the pattering of polarized tight (see, for example, fl7]). 

We wish to thank E. B. Dolgoshein for his help with the n~e~cal.calcula~ons~ 
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