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An analytic solution of the Boltzmann equation with a BGK (Bhatnagar, Gross and Krook) collision
operator is constructed in the problem of the temperature jumps and the density of a rarefied gas in the
half-space above a volatile surface, where a constant temperature gradient is specified far from the
surface. The necessary numerical calculations are carried out. A canonical-matrix method with a
normal form at infinity is simultaneously developed to solve the Riemann-Hilbert vector boundary -
value problem. The proof of the expansion of the solution of the boundary-value problem considered
in generalized eigenvectors of the corresponding characteristic equation is reduced to the solution of
this problem.

This problem has been solved by different approximate methods in many publications (for
example, [1-8]). The history of the problem is described in [8-10], and also in the other
publications mentioned.

Below, we obtain an accurate solution (in closed form) of this classical problem, expressed
in quadratures, and we carry out numerical calculations using the exact formulae. The
Boltzmann equation is reduced to a vector integro-differential equation with symmetric kernel,
which is solved by Case’s method, which consists of expanding the solution in generalized
eigenvectors. The proof of the theorem of the expansion is equivalent to the solution of the
Riemann-Hilbert vector boundary-value problem with a matrix coefficient, the diagonalizing
matrix of which is analytic in the plane with branch cuts connecting branching points. Hence,
to construct the factor-matrix for the coefficient it is necessary to solve two other additional
matrix boundary-value problems on the branch cuts. Along the way a canonical-matrix
method is developed for solving the boundary-value problem.

The fundamental-matrix method was developed previously [11] to solve the corresponding
boundary-value problem. In this paper a canonical matrix is used. Note that although the
canonical matrix itself (in the temperature-jump problem) was constructed in [12], it was not
used to solve the corresponding boundary-value problem.

The equations considered and their analogues are widely employed not only in kinetic
theory but also in theoretical astrophysics, in plasma physics, and in neutron-transport theory
(for more detail see, for example, [13-15])).

Suppose a rarefied monatomic gas occupies the half-space x > 0 above a volatile surface
which lies in the x =0 plane. A steady temperature field 7(x)=T,(1+ Kx) is maintained in the
gas far from the surface. The behaviour of the gas is described by the distribution function f,
which is the solution of the Boltzmann equation
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0
v, a—f(x,C) = Lf
x

and satisfies the boundary conditions

F(x,€C)= FO1+(Kx - AC, +€,)(C? - %) +€, +er] (x> )
f(09C)=f(o), Cx >0

Here

er=(Lh-T,)/T,, &, =(ng~n,)/n,
@ =n,®, /1y exp(-C?)
C=pY2%y, B, =m/(2kT,), A=3Ki/n

(e, and g, are the initial values of the temperature jumps and the density, respectively, T, is
the temperature of the wall, and n, is the saturated-vapour density).

The novelty of this problem from the physical point of view, compared with that considered
in [11], is the fact that in this problem the gas occupies a half-space above the volatile
(permeable) surface, through which there is no mass flux from the surface, i.e. the gas is in
mechanical equilibrium with the surface. The presence of a temperature gradient in the system
denotes thermal non-equilibrium. This means that the concentration of the gas in the region of
the surface is different from the equilibrium value—the concentration of the saturated vapour
at the surface temperature.

The main problems from the physical point of view considered in this paper are to calculate
the relative deviation of the vapour concentration from the equilibrium value (the value of €,)
and to calculate the relative temperature jump (the value of €;).

We will seek a solution of the Boltzmann equation in the form

f=FOl+(Kx-AC,XC? - %)+ ¥(x,0)]
and we will expand Y in two orthogonal directions

Y =Y,(xC)+(C2+C? - (x,C,)

Then, we obtain the following equation for the column vector
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Y(°°s u) = 8T

2 1 1
u ———
| 2 +€nHOI (n<0) (2

(the superscript T denotes transposition).
We seek a solution of Eq. (1) in the form

Y, (%, 1) = exp(~x / MF(n, 1) 3)

and we arrive at the characteristic equation

(n-u)Fm,u)=7%nQ(u)n(n)

v )
[n(n)= ] eXP(—uz)Q’(u)F(n,u)du)

where n(n) is a non-singular normalizing vector. Hence we obtain the following eigenvectors
of the characteristic equation

1
n-u

F(n,p)= [717 ne(p)P +exp(m?)Q~ T (MAMS(n - u)} n(n)

- ®)
=7+ T 2y
(A(z)—l+ 7o 2] 0 molw)exp(-p )u_z)

The symbol Px™ denotes a distribution—the principal value of the integral of x™, §(x) is
the delta function A(z) is the dispersion matrix, I is the unit matrix, and Q7 (i) is the inverse
transposed matrix.

It can be shown that the dispersion equation

A(2)=det A(z)=0

has a fourth-order zero at infinity, to which the following solutions of Eq. (1) correspond
2 1
Yn=uu 14“’ Yz=ﬂoa, h=(u-0h, Y =(@-0h (6)

Theorem. Equation (1) with boundary conditions (2) has a unique solution, which can be
represented in the form of the expansion

2_ 11 =
Y(x,u)=er“ : 1% "Hnu 0 u+ (I) exp(—%}"(n,u)dn (7

Proof. We substitute x=0 and the eigenvectors (5) into (7). We obtain a singular vector
integral equation with a Cauchy kernel on the half-axis p>0

1 oo
v =70 T dn+exp T (AW ®
2_3 2_1 1
[\v(u)=Au W3 ”-8r " 2"—6.." "]
1 1 0
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Multiplying (8) on the left by pexp(~p*)Q7(1) and using the boundary values on the half-
axis of the dispersion matrix and the vector

_ 1 smn)
Vo=l ™ ©)

we obtain a homogeneous Riemann-Hilbert vector boundary-value problem with matrix
coefficient, which, after transposition, can be written in the form

VTN () ~ @ v )IT AT (W) = [2VRIN- (0 - 7 W A (), 1>0  (10)
Multiplying (10) on the right by Q"' (W)Q " (1) and putting

W(@)=A@Q 07 an

we obtain the following boundary-value problem

VRN () - 0~ WL W () = [24miN~ () - @7 w(w)l W™ (), 1>0 (12)
Note that the matrix

1y Lim-22-14
_ 2 2
BT LACAR I

(D) =+w(z), w)=2"-322+25/4)

reduces the matrix W(z) to diagonal form
S(2)W(2)S™! (2) = diag{Q;(2), Q(2)}=Q(2)

Here

Qo (2) =1/ 4[11/2= 22 4 (-1)* r(2)+ 421(2)] (2 =1,2)

are the elements of the diagonal matrix Q(z).

The matrix-function $(z) is unique and analytic in the plane with branch cuts I and I3,
connecting the branching points -7 and a,and —e and &, respectively, which are zeros of the
polynomial w(z)(a)=(2)+i/V(2)).

For the matrix coefficient

~1
Gy = AT ([ A" (w)] (13)
that occurs in the boundary condition (10), we consider the factorization problem

O (W =GP (L) n>0 (14

Moreover, for the matrix-function ®(z) to be unique it is necessary for the following
condition to be satisfied on the branch-cut =T, UT;,

&t (t)=0 (1), tel (15)

We will seek a solution of problems (15) and (14) in the form
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®(z) =5 (2)U(2)S(2) (16)

where U(z) is a new unknown matrix.
Boundary-value problems (14) and (15) are now equivalent to the following boundary-value
problems

Ut (W) =Go(W)U™ (1), 1u>0 (17)
Ut(v)yT=TU (1), 1€l (18)

Here
G = SWGWS™ (=" le )]

=-s*(fs @] =u (1) (1) “

Since the matrix G, is diagonal, it is convenient to take U also in the form of a diagonal
matrix: diag{U,, U,}=U. The matrix boundary-value problem (17) can now be split into two
scalar boundary-value problems

H) (@=12), u>0 (19)

while problem (18) essentially remains a vector boundary-value problem
Uf(t)=Uj(t), teT (20)

Without deriving it, we will give the solution of problems (19) and (20)
Uy(2) = (2~ x)UP(2) (@=12) (21)

UL (2) = exp{ A(2) + (-1)* ' r(2)(B(2) - R(2))}

___l_°°d(x) =_1_°" b(x)dx
A(z)—m({x_z dx, B(z) o g_—_r(x)(x—z)
¥ dx
R(z)= [—F
@ Lmuq)

a(x)=0;(x)+0,(x)-2xr, b(x)=0,(x)-6,(x)

The point x, is the solution of the Jacobi inversion problem
oo X
L5h) % dx
21 o r(x) o r(x)

Here 0,(x) is the principal value of the argument of the function Q;(x).
Thus, the factor-matrix &(z) for the dispersion matrix A(z) is constructed and defined by
expression (16). Another factorization of the dispersion matrix from [16] is now necessary

A(2) = @o(2)®F (-2) (22)

where ®,(z) is a canonical matrix with normal form at infinity.
We substitute (22) into (10), multiply it on the right by & (-u) and apply a transposition to
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the equation obtained. We obtain the boundary-value problem

(@5 (0 [2VRIN* (1) - 07 W= @5 (W VTN~ @) - 27w, >0 (23)

Taking into account the behaviour at infinity of the matrices and vectors in this boundary
conditinn 21) we can write it oeneral salution
WASRLREA LARTES \HJ’, VW WAL FYYRARW LD s\dll & CAA DVIARLEVRL
ar:*‘r.f Y A - \a IIYH £ s ow \HGE .A"'r/ \n Ct “ PPN
&VKUV(Z}—(&Z‘ET‘)H 1 g "\h,,“l'!;;r)g 1 § + Wy {Z)ﬁ c g {;jﬁ}}
- 2

where ¢, and c, are arbitrary constants, We obtain the matrix ®;"(z) from (60) and (61) of
[12]

5 ()=12/50 T (2)8(-2) (25)

where the matrix Z(z) is defined by (62) in [12].

We will make the solution (24) correct, i.e. we will determine the unknown constants €,, €,,
¢, and ¢, so that this solution will decrease as 1/z at infinity. This vector can then be taken as
the vector N(z) given by (9).

Suppose p, and q,(n=0, -1, -2, . . . } are Laurent coefficients of the expansions of the
functions [UP(2)]” and [UD(2)] respectively in the neighbourhood of infinity, where, by (21),

"n o _-1 Wa will Aonnta hey 4 » nd D et O Y tha ¥ anvant anaffininnte ~nFf tha
Potdo we WL Geli0iC Dy A, &, 800G KR, (n=1, 4, ... ) lnd saurent coeinsients o1 ine

expanswns in the neighbourhood of infinity of the functions A(z), B(z) and R(z)

An=LTatxlan, B, =L T2E sty
Ko

2n 5 r(x)
(26)
Xt ]
R,=-[%f—
o r(x)
Equating the coefficients of z and 2° in the upper and lower rows of (23) to zero, we obtain a
system of equations, from which we have
3
= ‘—"2"*" A, Cy = 0
€r = Al-x; - ppP_1 + V3 biygp] 2n

€, = Alx, + pop_y —(go — 2P N3 by

where the coefficient b,, is defined in [12]. The free parameters of the vector N(z) are defined
uniquely, including also the coefficients e, and ¢, of expansion (7), corresponding to 2
discrete spectrum. The coefficients of the continuous spectrum n(j) are also found uniquely
from Sokhotskii’s formula: N*(u)- N (u)=pn(u). This proves the theorem. The last two
relations of (27) give the required values of the temperature jumps and the gas density above
the volatile surface. We will write these formulae in explicit form

3Ki
Er = -—f{leg'- A+ 3,3 - R_)}
Y v

—-—er-%§!—x,9exp{-—2&2 +2R,} (28)
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Q= +pwm -o’) (-

v—w-——{r{x,‘)a-}-x, —1 B= -yx}(i-i-f{z—-}ﬁ}
7l 2 T )

ftha nnolflfirinmic A D 2] R ars dafinad hu (A
(i€ COCINICHS A _1y Ay, By, R, 43, ATC GCLNCA UY (40,

Numerical calculations, carried out using the accurate formulae (28), give the following
values ¢, = 2.15897 K and ¢, =1.23035KI for the temperature jump and the density jump in the
rarefied gas, respectively. Up to the present time the exact value of the temperature jump was
assumed to be g, = 2.1646984 KI [16].

The first formula of (28) obtained here is identical with the formula (30) in [11].

The proposed method can be used to solve the similar Riemann-Hilbert boundary«value

promcm with matrix LU@UIL!ER{ (l[lC UlngIldllZlIlg mairix Ul witich has a Dfdntmﬂg pmm), that

occurs in the theory of the scattering of polarized light (see, for example, [17]).
We wish to thank E. B, Doleoshein for his help with the numerical calenlations
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